Ksama Arora

Steps to Optimize Hyperparameters:

Step 1: Define Parameter Search Space:

{
    "batch_size": choice(1, 2, 3, 4)
    "number_of_hidden_layers": choice(range(1,5))
}
from azureml.train.hyperdrive import GridParameterSampling
from azureml.train.hyperdrive import choice

param_sampling = GridParameterSampling({
        "num_hidden_layers": choice(1, 2, 3),
        "batch_size": choice (16, 32)
    }
)

Step 2: Specify Primary Metric:

primary_metric_name="accuracy",
primary_metric_goal=PrimaryMetricGoal.MAXIMIZE

Step 3: Specify Early Termination Policy:

from azureml.train.hyperdrive import BanditPolicy

early_termination_policy = BanditPolicy 
        (slack_factor = 0.1, evaluation_interval=1, delay_evaluation=5)

Step 4: Create and Assign Resources:

Step 5: Launch Experiment:

Step 6: Visualize Training Runs:

Step 7: Select Best Configuration: